CL3D: Unsupervised Domain Adaptation for Cross-LiDAR 3D Detection

نویسندگان

چکیده

Domain adaptation for Cross-LiDAR 3D detection is challenging due to the large gap on raw data representation with disparate point densities and arrangements. By exploring domain-invariant geometric characteristics motion patterns, we present an unsupervised domain method that overcomes above difficulties. First, propose Spatial Geometry Alignment module extract similar shape features of same object class align two domains, while eliminating effect distinct distributions. Second, Temporal Motion utilize in sequential frames match domains. Prototypes generated from modules are incorporated into pseudo-label reweighting procedure contribute our effective self-training framework target domain. Extensive experiments show achieves state-of-the-art performance cross-device datasets, especially datasets gaps captured by mechanical scanning LiDARs solid-state various scenes. Project homepage at https://github.com/4DVLab/CL3D.git.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Deep Domain Adaptation for Pedestrian Detection

This paper addresses the problem of unsupervised domain adaptation on the task of pedestrian detection in crowded scenes. First, we utilize an iterative algorithm to iteratively select and auto-annotate positive pedestrian samples with high confidence as the training samples for the target domain. Meanwhile, we also reuse negative samples from the source domain to compensate for the imbalance b...

متن کامل

Unsupervised Domain Adaptation for Clinical Negation Detection

Detecting negated concepts in clinical texts is an important part of NLP information extraction systems. However, generalizability of negation systems is lacking, as cross-domain experiments suffer dramatic performance losses. We examine the performance of multiple unsupervised domain adaptation algorithms on clinical negation detection, finding only modest gains that fall well short of in-doma...

متن کامل

Joint cross-domain classification and subspace learning for unsupervised adaptation

Domain adaptation aims at adapting the knowledge acquired on a source domain to a new different but related target domain. Several approaches have been proposed for classification tasks in the unsupervised scenario, where no labeled target data are available. Most of the attention has been dedicated to searching a new domain-invariant representation, leaving the definition of the prediction fun...

متن کامل

Unsupervised Language and Acoustic Model Adaptation for Cross Domain Portability

This work investigates the task of porting a broadcast news recognition system to a conversational speech domain, for which only untranscribed acoustic data are available. An iterative adaptation procedure is proposed that alternatively generates automatic speech transcriptions and performs acoustic and language model adaptation. The procedure was applied on a tourist-information conversational...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i2.25297